A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium
نویسندگان
چکیده
Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.
منابع مشابه
Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans.
Halanaerobium hydrogenoformans is an alkaliphilic bacterium capable of biohydrogen production at pH 11 and 7% (wt/vol) salt. We present the 2.6-Mb genome sequence to provide insights into its physiology and potential for bioenergy applications.
متن کاملGoing from microbial ecology to genome data and back: studies on a haloalkaliphilic bacterium isolated from Soap Lake, Washington State
Soap Lake is a meromictic, alkaline (∼pH 9.8) and saline (∼14-140 g liter(-1)) lake located in the semiarid area of eastern Washington State. Of note is the length of time it has been meromictic (at least 2000 years) and the extremely high sulfide level (∼140 mM) in its monimolimnion. As expected, the microbial ecology of this lake is greatly influenced by these conditions. A bacterium, Halanae...
متن کاملThe Use of a Fractional Factorial Design to Determine the Factors That Impact 1,3-Propanediol Production from Glycerol by Halanaerobium hydrogeniformans
In recent years, biodiesel, a substitute for fossil fuels, has led to the excessive production of crude glycerol. The resulting crude glycerol can possess a high concentration of salts and an alkaline pH. Moreover, current crude glycerol purification methods are expensive, rendering this former commodity a waste product. However, Halanaerobium hydrogeniformans, a haloalkaliphilic bacterium, pos...
متن کاملDynamic Model For Production of Biohydrogen Via Water- Gas Shift Reaction (RESEARCH NOTE)
In design of anaerobic bioreactor, rate equation is commonly used. Mathematical model was developed at steady state condition, to project concentration of gaseous substrate and product in biological oxidation of carbon monoxide with water to produce hydrogen and carbon dioxide. The concept of bioconversion was based on transport of CO from gas phase to liquid phase, as the CO consumption was in...
متن کاملGenome Sequence of Halanaerobium saccharolyticum subsp. saccharolyticum Strain DSM 6643T, a Halophilic Hydrogen-Producing Bacterium
Halanaerobium saccharolyticum is a halophilic anaerobic fermentative bacterium capable of producing hydrogen, a potential future energy carrier molecule. The high-quality draft genome of H. saccharolyticum subsp. saccharolyticum strain DSM 6643(T) consists of 24 contigs for 2,873,865 bp with a G+C content of 32.3%.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012